United States Patent

US009203815B1

(12) (10) Patent No.: US 9,203,815 B1
Bogorad et al. 45) Date of Patent: Dec. 1, 2015
(54) SYSTEMS AND METHODS FOR SECURE 2013%513191,2?; ill : 2%88 Eogue et 31~1 ~~~~~~~~~~~~~~~~~~~~ 71;/21643
_ opasz etal. ...
THIRD-PARTY DATA STORAGE 2014/0189808 Al* 7/2014 Mahaffey etal. 726/4
(71) Applicant: Symantec Corporation, Mountain View, OTHER PUBLICATIONS
CA (US) L
Dewan, Synchronous vs Asynchronous, 2006, University of North
. . . Carolina at Chapel Hill Department of Computer Science, COMP
(72) Inventors: EV&?lte]:)r Bolgoré}jl, Dém Vllle’CiA ([SJS)’ 242 Class Notes, Section 3: Interprocess Communication.*
ric Douglas, Los (satos, Us) Steve Chazin, et al; Systems and Methods for Sharing Data Stored on
. . . Secure Third-Party Storage Platforms; U.S. Appl. No. 13/952,487,
(73) Assignee: Symantec Corporation, Mountain View, filed Jul. 26, 2013.
CA (US)
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this)))
patent is extended or adjusted under 35 Primary Examiner — Tae Klm
U.S.C. 154(b) by 37 days. Assistant Examiner — Louis Teng
(74) Attorney, Agent, or Firm — ALG Intellectual Property,
(21) Appl. No.: 14/092,757 LLC
(22) Filed: Now. 27,2013 7 ABSTRACT
A computer-implemented method for secure third-party data
(51) Imt.ClL storage may include (1) identifying, at a server-side comput-
HO4L 29/06 (2006.01) ing system, a data access request from a client system to
HO04L 9/00 (2006.01) access an encrypted file stored under a user account, (2)
HO04L 9/08 (2006.01) rf:ce;iving along poll request from the c}ient system, (3) iden-
(52) US.CL tifying an asymmetric key pair de51gnated for the user
CPC HO4L 63/0442 (2013.01) account, the asymmetric key pair including an encryption key
L R ’ and a decryption key that has been encrypted with a client-
(58) gl}(:lcd of Classification Search HOAL 63/0442 side key, (4) responding to the long poll request with a mes-
..... e g sage notifying the client system to transmit the client-side
See application file for complete search history. key, (5) receiving, from the client system, the client-side key,
(56) References Cited (6) decrypting the decryption key with the client-side key, and

U.S. PATENT DOCUMENTS

8,458,494 Bl
8,484,716 B1*

6/2013 Bogorad
7/2013 Hodgsonetal. 726/11

300

\

(7) using the decryption key to access an unencrypted version
of the encrypted file. Various other methods, systems, and
computer-readable media are also disclosed.

20 Claims, 7 Drawing Sheets

Start

Identify, at a server-side computing system, a data access request from a client
system to access an encrypted file stored under a user account, wherein the
requested access requires decryption of the encrypted file

v

Receive a long pell request from the client system
304

v

Identify, in response to the data access request, an asymmetric key pair
designated for the user account that includes both an encryption key and a
decryption key that has been encrypted with a client-side key
306

v

Respond to the long poll request, in reaction to the data access request, with a
message notifying the client systam to transmit the client-side key
308

v

Receive, from the client system, the dlient-side key

v

Decrypt the decryption key with the client-side key
312

v

Use the decryption key to access an unencrypted version of the encrypted file
314

U.S. Patent

Dec. 1, 2015

Sheet 1 of 7

System
100

Modules
102

Identification Module
104

Connection Module
106

Key Module
108

Response Module
110

Receiving Module
112

Decryption Module
114

Access Module
116

FIG. 1

US 9,203,815 B1

U.S. Patent

200

\

Dec. 1, 2015

Sheet 2 of 7

Network
204

US 9,203,815 B1

Client System
206

Client-side Key
230

Computing Device

202
Request .| Identification Module
210 " 104
Request .| Connection Module Asymmetric Key Pair
212 > 106 220
. Encrypted
* Encryption Decryption
Key Module Key Key
108 222
108 224
v ;
Message Response Module :
214 110 :
1
* 1
___________ " '
: Client-side Key :_’ Receiving Module :
: 230 ' 112 i
e e m = Il 1
]
v !
Decryption Key —» Decryption Module — User Account
226 114 240
‘ Encrypted File
File —» Access Module y242
244 116 -

FIG. 2

U.S. Patent Dec. 1, 2015 Sheet 3 of 7 US 9,203,815 B1

300

™ (o)

v

Identify, at a server-side computing system, a data access request from a client
system to access an encrypted file stored under a user account, wherein the
requested access requires decryption of the encrypted file
302

v

Receive a long poll request from the client system
304

v

Identify, in response to the data access request, an asymmetric key pair
designated for the user account that includes both an encryption key and a
decryption key that has been encrypted with a client-side key
306

v

Respond to the long poll request, in reaction to the data access request, with a
message notifying the client system to transmit the client-side key
308

v

Receive, from the client system, the client-side key
310

v

Decrypt the decryption key with the client-side key
312

v

Use the decryption key to access an unencrypted version of the encrypted file
314

v

)

FIG. 3

US 9,203,815 B1

Sheet 4 of 7

Dec. 1, 2015

U.S. Patent

ovy 142
8|14 peydAoul _ . 8|14 pedAiousun
[9GPy
| deis
=% _|__ llllllllllll H 8GP
oy “ [22% ' dalg
ali4 pa1dAioug 4'1 Key a1l .m
Yoy mmmmmmmmee-- .
de _
o 5 7 5T]
mmv foy | Aoy uondhoeq |
o uondAinag q > a4
uondAioug 0e1dAIOUS ~ oSy
sy < deig
37 T k457 |
ocy
lied Aoy oujBWWASY | Aoy epis-uslD | A|%%M|v
e I
¢ 2147
—_ delg
0cy
wJofje|d sbelols Aued-payl < QMMM

orv
8|14 paydAiousun

k%2
Aay| spis-juslD

(57
weysAg Jusi|D

US 9,203,815 B1

Sheet S of 7

Dec. 1, 2015

old ol
072 0cs s8l0]S
J181] $8800Y-EJe(Ja1] UoBUUoD Koy spis-juain
8 Y0 8) S
— — —
9ll Ll Fmmm——,————— - 0oLl
S|NPON SINPoWy “ %15 “ SINPOW
S8y uonjdAineg I Aoy apis-jualD | 96 asuodsoy
4 50T bmmmmmoool A [dag ™ 901
S|NPON SINPOW
a|npoy Aoy
Buinlooay 7S uoIPBULOD 1S
ol ananp wnjsy 21018 Ao)]
aInpopy =
uoleslyRUSP
e T b74]
1BAIBS $S800Y Ble(loAIeg sjelIpauUIBU|
A
966 294 |
da d h [
1S 768 3]s
da
1S 1251
delg
I
5T T A T |00
s|npoy s|NpPoOn 1 9¢G l s|npo delg TR
$5000y uondAiosg | Isenbsy ' asuodsey Ko BPISUBID
¢t 30T fTTTTTTTTr "1 ges 901 — 30—
3[NpPon — —> s|npo de)s
6 a|npon Aey _ de)g
UIAI908Y ces uoIJ2BUUOY) FaRe]
ol 2 ! anany) 1ssnbay] —= I |e— 055 __| 210)G Ao
R A 1 1 VLS ! dsig
INPON 34 1 1A 1
1 9 dpIs-uaID
UoESNRUSP | _SPISUSID 55 R 4
TS eseqejeq f-====-7 44 /
18AIBS $S800Y Ble(uonoBUUO)D loAleg sjelpauIBlU| 00S

U.S. Patent

US 9,203,815 B1

Sheet 6 of 7

Dec. 1, 2015

U.S. Patent

9 OId

Alowsy waisAg

€Eo €9
aolne(abelo)s a01Aa(abeio)g
dnyoeg Arewnd
829 [74)
Y A 801n8(9218
nduj Aeldsig
A A
\ 4 \ 4
¥e9 0g9 929 AR
20BLB)U| aoelalU| 1s)depy alnjonnselju|
afeloig ndu| Aeidsig uolJeSIUNWWOo)D
A A A \
\ 4 \ 4 \ 4
< X >
y
— 201
mowmwuc_ 023 819 ssNpoy 719
uonesILNWIWON Js|[o4uc) O/l Ja|joJuo)) Alowsy — J0SS8001d
919

x_

019

waisAg Bunndwon

US 9,203,815 B1

Sheet 7 of 7

Dec. 1, 2015

U.S. Patent

VA

N)OZZ

ao1Aa(

Old

A

(NJ0GZ

ao1n8(g

0z

a01A2Q

A

(1062

8o1Ae(g

S6.
Aely abelo)g
Jushipu|

JonIDg

ovL
15AI88

(N)09Z

s01A0Q

A

A

(1)09Z

so1n0(

A

0¢Z
usio

0zl
a0

001
WIBISAg

01z
usio

AN

00L
2JN198]IY2JY YJOMISN

US 9,203,815 Bl

1
SYSTEMS AND METHODS FOR SECURE
THIRD-PARTY DATA STORAGE

BACKGROUND

Organizations and consumers increasingly use third-party
services to store data. Third-party storage services may pro-
vide a number of benefits to customers, including flexibility,
low capitalization requirements, add-on services, data shar-
ing, and centralized access to data.

Many third-party storage customers want or need to
encrypt their data before submitting the same to a third-party
storage vendor. For example, individual consumers may wish
to encrypt data sent to third-party storage vendors due to
privacy concerns. Similarly, organizations may wish to
encrypt data sent to third-party storage vendors in order to
ensure compliance with internal or external data-protection
requirements, such as governmental laws and regulations,
partnership agreements with other organizations, etc. Unfor-
tunately, by encrypting data before submitting the same to a
third-party storage system, customers may interfere with a
third-party storage vendor’s attempt to deduplicate the data.
For example, if two customers encrypt identical files using
different encryption schemes (e.g., different keys), the result-
ing encrypted files will differ, potentially preventing the
third-party storage vendor from deduplicating the files into a
single file that is referenced multiple times. Additionally,
encrypting files before submitting the files to a third-party
storage system may interfere with the ability of a third-party
storage service to efficiently share the files with other users
where directed.

Accordingly, the instant disclosure identifies and addresses
a need for additional and improved systems and methods for
secure third-party data storage.

SUMMARY

As will be described in greater detail below, the instant
disclosure generally relates to systems and methods for
secure third-party data storage by maintaining asymmetric
key pairs for encrypting and decrypting secured data (e.g.,
files and/or encryption keys for files) on a third-party storage
server and encrypting the decryption keys of these asymmet-
ric key pairs with encryption keys maintained by clients.
These systems and methods may facilitate client-side security
by using client-initiated long poll connections to allow a
third-party storage service to initiate requests the client-main-
tained encryption keys.

In one example, a computer-implemented method for
secure third-party data storage may include (1) identitying, at
a server-side computing system, a data access request from a
client system to access an encrypted file stored under a user
account, where the requested access requires decryption of
the encrypted file, (2) receiving a long poll request from the
client system, (3) identifying, in reaction to the data access
request, an asymmetric key pair designated for the user
account, the asymmetric key pair including an encryption key
and a decryption key that has been encrypted with a client-
side key, (4) responding to the long poll request, in reaction to
the data access request, with a message notifying the client
system to transmit the client-side key, (5) receiving, from the
client system, the client-side key, (6) decrypting the decryp-
tion key with the client-side key, and (7) using the decryption
key to access an unencrypted version of the encrypted file.

In some examples, the computer-implemented method
may further include receiving a prior long poll request from
the client system that times out before receiving the long poll

10

20

25

35

40

45

2

request from the client system, where the client system sends
the long poll request in response to determining that the prior
long poll request has timed out.

In one embodiment, (1) receiving the long poll request
from the client system may include receiving the long poll
request at an intermediate application tier that is configured to
receive the client-side key from the client system and to
provide the client-side key to a data-serving application tier
that accesses the unencrypted version of the encrypted file,
and (2) decrypting the decryption key with the client-side key
may include decrypting the decryption key at the data-server
application tier.

In some examples, identifying the data access request may
include receiving the data access request at the data-serving
application tier. In one embodiment, the data-serving appli-
cation tier, in response to receiving the data access request,
may perform a synchronous call to the intermediate applica-
tion tier that requests the client-side key.

In one embodiment, the intermediate application tier, upon
receiving a synchronous call from the data-serving applica-
tion tier that requests the client-side key, may check for an
active long poll connection established by the long poll
request. In one embodiment, (1) the intermediate application
tier, upon receiving a synchronous call from the data-serving
application tier that requests the client-side key, may deter-
mine that no active long poll connection for requesting the
client-side key is available, and (2) in response to determining
that no active long poll connection for requesting the client-
side key is available, the intermediate application tier may
place the synchronous call in a request queue until an active
long poll connection is established via the long poll request.

In one embodiment, (1) a first server within the intermedi-
ate application tier may receive a synchronous call from the
data-serving application tier requesting the client-side key,
(2) a second server within the intermediate application tier
may receive the client-side key from the client system, (3) the
second server may place the client-side key in return queue,
and (4) the first server may retrieve the client-side key from
the return queue.

In one embodiment, (1) the intermediate application tier
may receive an authentication token derived at least in part
from user credential information used for access to the data-
access application tier, and (2) the intermediate application
tier may respond with the message notifying the client system
to transmit the client-side key in response to determining that
the authentication token is valid.

In one embodiment, a system for implementing the above-
described method may include (1) an identification module
that identifies, at a server-side computing system, a data
access request from a client system to access an encrypted file
stored under a user account, where the requested access
requires decryption of the encrypted file, (2) a connection
module that receives a long poll request from the client sys-
tem, (3) a key module that identifies, in reaction to the data
access request, an asymmetric key pair designated for the user
account, the asymmetric key pair including an encryption key
and a decryption key that has been encrypted with a client-
side key, (4) a response module that responds to the long poll
request, in reaction to the data access request, with a message
notifying the client system to transmit the client-side key, (5)
a receiving module that receives, from the client system, the
client-side key, (6) a decryption module that decrypts the
decryption key with the client-side key, (7) an access module
that uses the decryption key to access an unencrypted version
of'the encrypted file, and (8) at least one processor configured
to execute the identification module, the connection module,

US 9,203,815 Bl

3

the key module, the response module, the receiving module,
the decryption module, and the access module.

In some examples, the above-described method may be
encoded as computer-readable instructions on a computer-
readable-storage medium. For example, a computer-read-
able-storage medium may include one or more computer-
executable instructions that, when executed by at least one
processor of a computing device, may cause the computing
device to (1) identify, at a server-side computing system, a
data access request from a client system to access an
encrypted file stored under a user account, where the
requested access requires decryption of the encrypted file, (2)
receive a long poll request from the client system, (3) identify,
in reaction to the data access request, an asymmetric key pair
designated for the user account, the asymmetric key pair
including an encryption key and a decryption key that has
been encrypted with a client-side key, (4) respond to the long
poll request, in reaction to the data access request, with a
message notifying the client system to transmit the client-side
key, (5) receive, from the client system, the client-side key, (6)
decrypt the decryption key with the client-side key, and (7)
use the decryptionkey to access an unencrypted version of the
encrypted file.

Features from any of the above-mentioned embodiments
may be used in combination with one another in accordance
with the general principles described herein. These and other
embodiments, features, and advantages will be more fully
understood upon reading the following detailed description in
conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings dem-
onstrate and explain various principles of the instant disclo-
sure.

FIG. 1 is a block diagram of an exemplary system for
secure third-party data storage.

FIG. 2 is a block diagram of an exemplary system for
secure third-party data storage.

FIG. 3 is a flow diagram of an exemplary method for secure
third-party data storage.

FIG. 4 is a block diagram of an exemplary system for
secure third-party data storage.

FIG. 5 is a block diagram of an exemplary system for
secure third-party data storage.

FIG. 6 is a block diagram of an exemplary computing
system capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

FIG. 7 is a block diagram of an exemplary computing
network capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

Throughout the drawings, identical reference characters
and descriptions indicate similar, but not necessarily identi-
cal, elements. While the exemplary embodiments described
herein are susceptible to various modifications and alternative
forms, specific embodiments have been shown by way of
example in the drawings and will be described in detail
herein. However, the exemplary embodiments described
herein are not intended to be limited to the particular forms
disclosed. Rather, the instant disclosure covers all modifica-
tions, equivalents and alternatives falling within the scope of
the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The present disclosure is generally directed to systems and
methods for secure third-party data storage. As will be

30

35

40

45

50

55

65

4

explained in greater detail below, by maintaining asymmetric
key pairs for encrypting and decrypting secured data (e.g.,
files and/or encryption keys for files) on a third-party storage
server and encrypting the decryption keys of these asymmet-
ric key pairs with encryption keys maintained by clients, the
systems and methods described herein may securely store and
encrypt client data without storing the client-side decryption
keys required to access the secured data in an unencrypted
state. Furthermore, by using client-initiated long poll connec-
tions to allow a third-party storage service to initiate requests
for the client-maintained encryption keys, these systems and
methods may improve client-side security (e.g., by enabling
the third-party storage service to initiate requests without
requiring that a client-side device maintain an open port that
could potentially weaken a firewall and increase client expo-
sure to outside threats). Additionally, in some examples these
systems and methods may authenticate requests to retrieve
client-side encryption keys to avoid unauthorized access to
client-side encryption keys.

The following will provide, with reference to FIGS. 1, 2, 4,
and 5, detailed descriptions of exemplary systems for secure
third-party data storage. Detailed descriptions of correspond-
ing computer-implemented methods will also be provided in
connection with FIG. 3. In addition, detailed descriptions of
an exemplary computing system and network architecture
capable of implementing one or more of the embodiments
described herein will be provided in connection with FIGS. 6
and 7, respectively.

FIG. 1 is a block diagram of exemplary system 100 for
secure third-party data storage. As illustrated in this figure,
exemplary system 100 may include one or more modules 102
for performing one or more tasks. For example, and as will be
explained in greater detail below, exemplary system 100 may
also include an identification module 104 that may identify, at
a server-side computing system, a data access request from a
client system to access an encrypted file stored under a user
account, where the requested access requires decryption of
the encrypted file. Exemplary system 100 may additionally
include a connection module 106 that may receive a long poll
request from the client system. Exemplary system 100 may
also include akey module 108 that may identity, in reaction to
the data access request, an asymmetric key pair designated for
the user account, the asymmetric key pair including an
encryption key and a decryption key that has been encrypted
with a client-side key. Exemplary system 100 may addition-
ally include a response module 110 that may respond to the
long poll request, in reaction to the data access request, with
a message notifying the client system to transmit the client-
side key. Exemplary system 100 may also include a receiving
module 112 that may receive, from the client system, the
client-side key. Exemplary system 100 may additionally
include a decryption module 114 that may decrypt the
decryption key with the client-side key. Exemplary system
100 may also include an access module 116 that may use the
decryption key to access an unencrypted version of the
encrypted file. Although illustrated as separate elements, one
or more of modules 102 in FIG. 1 may represent portions of a
single module or application.

In certain embodiments, one or more of modules 102 in
FIG. 1 may represent one or more software applications or
programs that, when executed by a computing device, may
cause the computing device to perform one or more tasks. For
example, and as will be described in greater detail below, one
or more of modules 102 may represent software modules
stored and configured to run on one or more computing
devices, such as the devices illustrated in FIG. 2 (e.g., com-
puting device 202 and/or client system 206), computing sys-

US 9,203,815 Bl

5

tem 610 in FIG. 6, and/or portions of exemplary network
architecture 700 in FIG. 7. One or more of modules 102 in
FIG. 1 may also represent all or portions of one or more
special-purpose computers configured to perform one or
more tasks.

Exemplary system 100 in FIG. 1 may be implemented in a
variety of ways. For example, all or a portion of exemplary
system 100 may represent portions of exemplary system 200
in FIG. 2. As shown in FIG. 2, system 200 may include a
computing device 202 in communication with a client system
206 via a network 204. Computing device 202 may be pro-
grammed with one or more of modules 102. Additionally or
alternatively, client system 206 may be programmed with one
or more of modules 102.

In one embodiment, one or more of modules 102 from FIG.
1 may, when executed by at least one processor of computing
device 202 and/or client system 206, facilitate computing
device 202 and/or client system 206 in secure third-party data
storage. For example, and as will be described in greater
detail below, one or more of modules 102 may cause com-
puting device 202 and/or client system 206 to facilitate secure
third-party data storage. For example, and as will be
described in greater detail below, identification module 104
may be programmed to identify, at server-side computing
device 202, a data access request 210 from client system 206
to access an encrypted file 242 stored under a user account
240, where the requested access requires decryption of
encrypted file 242. Connection module 106 may be pro-
grammed to receive a long poll request 212 from client sys-
tem 206. Key module 108 may be programmed to identify, in
reaction to data access request 210, an asymmetric key pair
220 designated for user account 240, asymmetric key pair 220
including an encryption key 222 and an encrypted decryption
key 224 that has been encrypted with a client-side key 230.
Response module 110 may be programmed to respond to long
poll request 212, in reaction to data access request 210, with
a message 214 notifying client system 206 to transmit client-
side key 230. Receiving module 112 may be programmed to
receive, from client system 206, client-side key 230. Decryp-
tion module 114 may be programmed to decrypt encrypted
decryption key 224 with client-side key 230. Access module
116 may be programmed to use decryption key 224 to access
anunencrypted version of encrypted file 242 (e.g., a file 244).

Computing device 202 generally represents any type or
form of computing device capable of reading computer-ex-
ecutable instructions. Examples of computing device 202
include, without limitation, laptops, tablets, desktops, serv-
ers, cellular phones, Personal Digital Assistants (PDAs), mul-
timedia players, embedded systems, combinations of one or
more of the same, exemplary computing system 610 in FIG.
6, or any other suitable computing device. In some examples,
computing device 202 may represent a group of servers that
facilitate secure data storage, access to stored data, and/or
encryption key retrieval.

Client system 206 generally represents any type or form of
computing device capable of reading computer-executable
instructions. Examples of client system 206 include, without
limitation, laptops, tablets, desktops, servers, cellular phones,
Personal Digital Assistants (PDAs), multimedia players,
embedded systems, combinations of one or more of the same,
exemplary computing system 610 in FIG. 6, or any other
suitable computing device. In some examples, client system
206 may represent an enterprise network that includes mul-
tiple computing devices that access third-party storage ser-
vices and/or store encryption keys for secure third-party stor-
age services.

10

15

20

25

30

35

40

45

50

55

60

65

6

Network 204 generally represents any medium or architec-
ture capable of facilitating communication or data transfer.
Examples of network 204 include, without limitation, an
intranet, a Wide Area Network (WAN), a Local Area Network
(LAN), a Personal Area Network (PAN), the Internet, Power
Line Communications (PLC), a cellular network (e.g., a Glo-
bal System for Mobile Communications (GSM) network),
exemplary network architecture 700 in FIG. 7, or the like.
Network 204 may facilitate communication or data transfer
using wireless or wired connections. In one embodiment,
network 204 may facilitate communication between comput-
ing device 202 and computing system 206.

FIG. 3 is a flow diagram of an exemplary computer-imple-
mented method 300 for secure third-party data storage. The
steps shown in FIG. 3 may be performed by any suitable
computer-executable code and/or computing system. In some
embodiments, the steps shown in FIG. 3 may be performed by
one or more of the components of system 100 in FIG. 1,
system 200 in FIG. 2, computing system 610 in FIG. 6, and/or
portions of exemplary network architecture 700 in FIG. 7.

As illustrated in FIG. 3, at step 302 one or more of the
systems described herein may identify, at a server-side com-
puting system, a data access request from a client system to
access an encrypted file stored under a user account, where
the requested access requires decryption of the encrypted file.
For example, at step 302 identification module 104 may, as
part of computing device 202 in FIG. 2, identify, at server-
side computing device 202, data access request 210 from
client system 206 to access encrypted file 242 stored under
user account 240, where the requested access requires
decryption of encrypted file 242.

In some examples, the server-side computing system may
operate as part of a third-party storage system. As used herein,
the term “third-party storage system’ may refer to any type or
form of storage system, including a cloud-based storage sys-
tem, that is capable of storing data on behalf of a user. In some
examples, the third-party storage system may store data for
multiple distinct entities. In at least one example, the entities
that store data with the third-party storage system may require
data security against each other (in order to, e.g., prevent
unprivileged access of data across entities), against intruders
(e.g., entities not authorized to access data stored within the
third-party storage system), and/or one or more administra-
tors of the third-party storage system. In some examples, the
third-party storage system may represent or include a single-
instance storage system (i.e., a storage system configured to
only store a single instance of each item of content for mul-
tiple owners).

Accordingly, the client system may, in turn, include any
system for facilitating the use of a third-party storage system.
In some examples, the client system may be owned and/or
administrated by an entity distinct from an owner and/or
administrator of the server-side computing device.

As used herein, the term “file” may refer to any suitable
unit of data, including, without limitation, a file, data object,
data segment, portion of a data stream, database, database
entry, and/or electronic document. In addition, the phrase
“user account” may refer to any identifier and/or privilege
system that may correspond to a data owner (used, e.g., to
identify data owned by the data owner and/or to secure data
owned by the data owner for use by the data owner).

Identification module 104 may identify any of a variety of
types of data access requests. For example, as will be
explained in greater detail below, identification module 104
may identify a request to retrieve an unencrypted version of
the encrypted file for the client system. Additionally or alter-
natively, identification module 104 may identify a request to

US 9,203,815 Bl

7

share an accessible version of the file with another user
account. In some examples, identification module 104 may
identify a request to perform one or more procedures on the
file (e.g., procedures that require access to an unencrypted
version of the encrypted file).

Identification module 104 may receive the data access
request in any of a variety of contexts. For example, identifi-
cation module 104 may receive a user-initiated data access
request from the client system. In some examples, one or
more of the modules described herein may operate in differ-
ent tiers of' a multi-tier application for secure third-party data
storage. For example, identification module 104 may operate
as a part of a client-facing tier (e.g., that provides an interface
for clients and/or users of the third-party data storage to
access stored data) and/or a data-server tier that processes
requests to access stored data.

In some examples, the client system may include only a
single computing device, and identification module 104 may
receive the data access request from the same computing
device that stores a decryption key needed to fulfill the data
access request. Alternatively, as will be explained in greater
detail below, the client system may include multiple comput-
ing devices, and identification module 104 may receive the
data access request from a computing device that is distinct
from another computing device within the client system that
stores a decryption key needed to fulfill the data access
request.

As an example, FIG. 4 provides an illustration of an exem-
plary system 400 that includes a simple client system 410 that
stores a client-side key 412 needed to access encrypted data
stored on third-party storage platform 420 and that also
requests access to an unencrypted version of the encrypted
data from third-party storage platform 420.

As mentioned earlier, in some examples one or more of the
modules described herein may operate in different tiers of a
multi-tier application for secure third-party data storage. In
some examples, identification module 104 may, as a part of a
data-serving application tier and in response to receiving the
data access request, perform a synchronous call to an inter-
mediate application tier that requests the client-side key.

Returning to FIG. 3, at step 304 one or more of the systems
described herein may receive a long poll request from the
client system. For example, at step 304 connection module
106 may, as part of computing device 202 in FIG. 2, receive
long poll request 212 from client system 206.

Asused herein, the phrase “long-poll request” may refer to
any type of request that establishes a channel of communica-
tion from an originating device to a target device and that
enables the target device to communicate with the originating
device at the initiative of the target device. Accordingly, a
long-poll request may invert the typical request-response
relationship of a client and server by enabling a server to
initiate substantive communication to a client via a connec-
tion established by the client. In some examples, a long-poll
request may allow a client to receive communication from a
server through a port that is used for typical request-response
communication (e.g., port 80 for Hypertext Transfer Protocol
communications) instead of receiving communication
through a separate (and, e.g., application-specific) port for
receiving inbound communication. By enabling a client to
receive substantive inbound communications through an out-
bound connection established by the client, the systems
described herein may reduce the attack surface of the client
and/or reduce the complexity of security rules needed to
protect the client.

In some examples, the long-poll request may have a set
timeout value, after which a connection established by the

5

10

15

20

25

30

35

40

45

50

55

60

65

8

long-poll request may be lost. In these examples, a client may
immediately send a new long-poll request to reestablish a
long poll connection. For example, connection module 106
may have received a prior long poll request from the client
system that timed out before connection module 106 received
the long poll request from the client system. In this example,
the client system may have sent the long poll request in
response to determining that the prior long poll request timed
out.

As mentioned earlier, in some examples one or more of the
modules described herein may operate in different tiers of a
multi-tier application for secure third-party data storage. For
example, connection module 106 may operate as a part of an
intermediate application tier that is configured to receive the
client-side key from the client system and to provide the
client-side key to a data-server application tier that accesses
the unencrypted version of the encrypted file.

Returning to FIG. 3, at step 306 one or more of the systems
described herein may identify, in reaction to the data access
request, an asymmetric key pair designated for the user
account, the asymmetric key pair including an encryption key
and a decryption key that has been encrypted with a client-
side key. For example, at step 306 key module 108 may, as
partof computing device 202 in FIG. 2, identify, inreaction to
data access request 210, asymmetric key pair 220 designated
for user account 240, asymmetric key pair 220 including
encryption key 222 and encrypted decryption key 224 thathas
been encrypted with client-side key 230.

As used herein, the phrase “asymmetric key pair” may
refer to any pair of cryptographic keys that includes both an
encryption key (or “public key”) and a decryption key (or
“private key”). The encryption key may include any key that
does not require secrecy in order to secure data encrypted
with the key. For example, the encryption key may be used to
encrypt data using an asymmetric key algorithm. Conse-
quently, decrypting data encrypted with the encryption key
may require the corresponding decryption key of the asym-
metric key pair. In some examples, the asymmetric key pair
may be stored on and/or by a third-party storage system. In at
least one example, neither the encryption key nor the decryp-
tion key may be distributed outside the third-party storage
system.

In addition, the phrase “client-side key,” as used herein,
may refer to any suitable cryptographic key or keys for
encrypting and/or decrypting the decryption key of the asym-
metric key pair. In some examples, the client-side key may
include a symmetric key (e.g., a key usable for both encrypt-
ing data and decrypting said data). For example, the client-
side key may be configured to encrypt and decrypt data
according to an Advanced Encryption Standard specification
(e.g., AES-256). In some examples, the client-side key may
be generated on the client system. For example, the client-
side key may be generated using a key derivation function,
such as a password-based key derivation function (e.g.,
PBKDEF2).

In some examples, the client-side key may be cached onthe
client system. Additionally or alternatively, the client-side
key may be generated as needed from a password (e.g., gen-
erated either at the client system or at a third-party storage
system). In some examples, the client-side key may be
retrieved from an external key store. As will be explained in
greater detail below, in some examples the client-side key
may not be stored on the server-side computing device and/or
within a third-party storage system implemented by the
server-side computing device. In some examples, the client-
side key may be accessible only by a corresponding client.

US 9,203,815 Bl

9

This client may correspond to an organization, a group with
shared secrets, a computing device, and/or any other suitable
entity.

In some examples, one or more of the systems described
herein may have used the encryption key within the asym-
metric key pair to encrypt the encrypted file. For example, one
or more of the systems described herein may receive the
unencrypted version of the encrypted file from the client
system and then generate the encrypted file. These systems
may generate the encrypted file by generating a file key based
on at least one characteristic of the unencrypted version of the
encrypted file and then encrypting the unencrypted version of
the encrypted file with the file key. For example, these sys-
tems may derive a hash of the unencrypted version of the
encrypted file and base the file key on the hash. In this manner,
the systems and methods described herein may produce iden-
tical encrypted files from identical unencrypted files, allow-
ing for deduplication across clients.

For example, the systems described herein may dedupli-
cate the encrypted file with an additional encrypted file that is
encrypted with the file key. Upon generating the file key, these
systems may encrypt the file key with the encryption key. The
term “deduplication,” as used herein, may refer to one or more
operations related to reducing the amount of storage space
used in a single-instance data storage system, including
operations for detecting and preventing data from being
redundantly stored to the single-instance data storage system.
Deduplication may be performed using any suitable dedupli-
cation technology or algorithm. In some examples, dedupli-
cation may include file-level deduplication. Additionally or
alternatively, deduplication may include block-level dedupli-
cation.

In addition to encrypting the unencrypted version of the
encrypted file, in some examples one or more of the systems
described herein may perform one or more operations based
on the unencrypted version of the encrypted file (e.g., before
encrypting the unencrypted version of the encrypted file and
thereby losing access to the unencrypted version of the
encrypted file). For example, one or more of the systems
described herein may index the contents of the unencrypted
version of the encrypted file, perform an anti-malware scan on
the unencrypted version of the encrypted file, generate a
preview of the contents of the unencrypted version of the
encrypted file, etc. In these examples, these systems may
associate metadata generated from the unencrypted version
of the encrypted file with the encrypted file once the
encrypted file is encrypted.

Key module 108 may identify the asymmetric key pair
designated for the user account in any suitable manner. In
some examples, a third-party storage system may host data
for multiple user accounts, each with a designated and distinct
asymmetric key pair. Accordingly, key module 108 may iden-
tify the asymmetric key pair for the user account according to
one or more identifiers and/or credentials provided by the
client system.

Returning to FIG. 3, at step 308 one or more of the systems
described herein may respond to the long poll request, in
reaction to the data access request, with a message notifying
the client system to transmit the client-side key. For example,
at step 308 response module 110 may, as part of computing
device 202 in FIG. 2, respond to long poll request 212, in
reaction to data access request 210, with message 214 noti-
fying client system 206 to transmit client-side key 230.

For example, response module 110 may respond to the
long poll request with any suitable message. For example,
response module 110 may respond to the long poll request
with an identifier of a user account that corresponds to the

20

30

40

45

55

10

client-side key. Additionally or alternatively, response mod-
ule 110 may respond to the long poll request with a command
that designated as a command to send the client-side key. In
some examples, the message may include an authentication
token that the client system can validate to ensure that the
request for the client-side key is legitimate.

As mentioned earlier, in some examples one or more of the
modules described herein may operate in different tiers of a
multi-tier application for secure third-party data storage. For
example, response module 110 may operate as a part of an
intermediate application tier. In this example, response mod-
ule 110, at the intermediate application tier, receive a syn-
chronous call from a data-serving application tier that
requests the client-side key. In some examples, response
module 110 may then place information relating to the syn-
chronous call (e.g., an identifier of a user account that corre-
sponds to the requested client-side key) in a request queue. In
these examples, response module 110 may later retrieve the
information relating to the synchronous call from the request
queue and use the information to create and send the message
notifying the client system to transmit the client-side key.
Additionally or alternatively, response module 110 may first
check for an available and active long poll connection for
requesting the client-side key. In this example, response mod-
ule 110 may place the information relating the synchronous
call in the request queue only after failing to find an available
and active long poll connection for requesting the client-side
key (or, alternatively, may send the message via an active long
poll connection for requesting the client-side key if one is
available).

As mentioned above, in some examples response module
110 may receive (e.g., as a part of an intermediate application
tier) a synchronous call and/or may retrieve information relat-
ing to a synchronous call to request the client-side key from
the client system. In some examples, response module 110
may, as a part of the intermediate application tier, receive an
authentication token (e.g., via the synchronous call) to vali-
date the synchronous call. For example, the authentication
token may be derived at least in part from user credential
information used for access to the data-access application tier.
Response module 110 may then, as a part of the intermediate
application tier, determine that the authentication token is
valid and proceed to respond to the client system with the
message notifying the client system to transmit the client-side
key. The authentication token may be derived in any suitable
fashion. For example, the authentication token may have been
generated during a user login using user account credentials
for a third-party storage service. In this example, these cre-
dentials may not be stored in non-volatile memory at the
third-party storage service, but rather forwarded to the inter-
mediate application tier to validate as a part of the process of
requesting the client-side key. In some examples, response
module 110 may receive a two-factor authentication token
value tied to a user account for which the client-side key is
requested (or a value derived from a two-factor authentication
token value) and include the token value in the message to the
client system. In this example, the client system may validate
the authentication token value to validate the request from the
intermediate application tier.

Returning to FIG. 3, at step 310 one or more of the systems
described herein may receive, from the client system, the
client-side key. For example, at step 310 receiving module
112 may, as part of computing device 202 in FIG. 2, receive,
from client system 206, client-side key 230.

As mentioned earlier, in some examples the client-side key
may not be stored on the server side (i.e., on the server-side
computing device and/or an associated third-party storage

US 9,203,815 Bl

11

system). For example, receiving module 108 may receive the
client-side key and store the client-side key in volatile
memory without storing the client-side key in non-volatile
memory. As used herein, the phrase “volatile memory” may
refer to any non-persistent and/or temporary storage location.
In some examples, the phrase “volatile memory” may refer to
random access memory. In addition, the phrase “non-volatile
memory” may refer to any persistent storage location. For
example, the phrase “non-volatile memory” may refer to a
storage device used by a file system to store one or more files.
In some examples, receiving module 112 may receive the
client-side key and not preserve the client-side key after use.
For example, receiving module 112 may discard the client-
side key after a session with the client system has terminated.

Receiving module 112 may receive the client-side key
from the client system in any of a variety of ways. For
example, receiving module 112 may receive the client-side
key from the client system directly. Additionally or alterna-
tively, receiving module 112 may receive the client-side key
from the client system by receiving data representing the
client-side key and from which the client-side key may be
generated. For example, receiving module 112 may receive a
password for a key derivation function from the client system
and use this key derivation function to generate the client-side
key from the password. In this example, receiving module
108 may also keep the password only in non-volatile memory
and/or discard the password upon using the password to gen-
erate the client-side key.

At step 312 one or more of the systems described herein
may decrypt the decryption key with the client-side key. For
example, at step 312 decryption module 114 may, as part of
computing device 202 in FIG. 2, decrypt encrypted decryp-
tion key 224 with client-side key 230.

Decryption module 114 may decrypt the decryption key in
any suitable manner. For example, decryption module 114
may apply the client-side key to the decryption key according
to a predetermined symmetric key algorithm to generate a
decrypted version of the decryption key.

As mentioned earlier, in some examples one or more of the
modules described herein may operate in different tiers of a
multi-tier application for secure third-party data storage. For
example, decryption module 114 may operate as a part of a
data-server application tier that accesses the unencrypted ver-
sion of the encrypted file. Accordingly, decryption module
114 may decrypt the decryption key at the data-server appli-
cation tier.

At step 314 one or more of the systems described herein
may use the decryption key to access an unencrypted version
of'the encrypted file. For example, at step 314 access module
116 may, as part of computing device 202 in FIG. 2, use
decryption key 224 to access an unencrypted version of
encrypted file 242 (e.g., file 244).

Access module 116 may use the decryption key to access
the unencrypted version of the encrypted file in any of a
variety of ways. For example, access module 116 may iden-
tify a file key used to encrypt the encrypted file. In this
example, the file key may be encrypted with the encryption
key. Accordingly, access module 116 may decrypt the file key
with the decryption key and then decrypt the encrypted file
with the file key.

Access module 116 may access the unencrypted version of
the encrypted file to any of a variety of ends. For example, as
detailed above, the request from the client system may
include a request to retrieve an unencrypted version of the
encrypted file. Accordingly, access module 116 may transmit
the unencrypted version of the encrypted file to the client
system (e.g., in response to the request).

20

25

30

40

45

60

12

FIG. 4illustrates an exemplary system 400 for secure third-
party data storage. As shown in FIG. 4, exemplary system 400
may include a client system 410 configured to store one or
more files via a third-party storage service facilitated by third-
party storage server 420. For example, client system 410 may
have previously transmitted an unencrypted file 446 to third-
party storage server 420. Third-party storage server 420 may
have identified an asymmetric key pair 430 associated with
client system 410 and encrypted unencrypted file 446 using
an encryption key 432. In one example, client system 410
may attempt to retrieve unencrypted file 446, now stored on
third-party storage server 420 as encrypted file 440. For
example, at step 447 client system 410 may send a long poll
request to third-party storage platform 420 to open a long poll
connection with third-party storage platform 420. At step
448, client system 410 may transmit a message to third-party
storage platform 420 requesting unencrypted file 446. At step
449, third-party storage platform may respond to the long poll
request with a message requesting client-side key 412 and
client system 410 may provide client-side key 412 to third-
party storage platform 420. Third-party storage server 420
may accordingly receive client-side key 412 and maintain
client-side key 412 in memory for use.

At step 452, third-party storage server 420 may identify
asymmetric key pair 430 and use decrypt an encrypted
decryption key 434 with client-side key 412 to result in
decryption key 436. At step 454, third-party storage server
420 may use decryption key 436 to decrypt an encrypted file
key 442 to obtain a file key 444 for encrypted file 440. At step
456, third-party storage server 420 may use file key 444 to
decryptencrypted file 440 and obtain unencrypted file 446. At
step 458, third-party storage server 420 may transmit unen-
crypted file 446 to client system 410, fulfilling the request by
client system 410. Third-party storage system 420 may addi-
tionally discard client-side key 412, decryption key 436, and
file key 444, and delete unencrypted file 446.

In some examples, access module 116 may access the
unencrypted version of the encrypted file to generate meta-
data describing the unencrypted version of the encrypted file.
In some examples, access module 116 may then store the
metadata in relation to the encrypted file so that the metadata
describing the encrypted file remains available even after the
unencrypted version of the encrypted file is no longer directly
accessible on a third-party storage system.

For example, access module 116 may perform a security
scan on the unencrypted version of the encrypted file (e.g., to
determine whether the encrypted file includes any malware or
poses any other security risk). In another example, access
module 116 may index the unencrypted version of the
encrypted file based on content within the unencrypted ver-
sion of the encrypted file (e.g., to facilitate searching for the
encrypted file based on its content without access to the
unencrypted version of the encrypted file). In an additional
example, access module 116 may generate a preview of the
unencrypted version of the encrypted file based on content
within the unencrypted version of the encrypted file (e.g., to
facilitate browsing through encrypted files without access to
the unencrypted versions of the encrypted files). As detailed
above, in some examples one or more systems described
herein may additionally or alternatively perform one or more
of'the operations described above when the unencrypted ver-
sion of the encrypted file is first uploaded (e.g., before encryp-
tion).

In some examples, access module 116 may provide access
to the unencrypted version of the encrypted file to another
party. For example, access module 116 may provide access to
the unencrypted version of the encrypted file to another user

US 9,203,815 Bl

13

account. In this example, an additional asymmetric key pair
may be designated for the additional user account, including
an additional encryption key and an additional decryption
key. The additional decryption key may be encrypted with an
additional client-side key (pertaining, e.g., to an additional
client system corresponding to the additional user account).
In this example, access module 116 may provide access to the
unencrypted version of the encrypted file to the additional
user account by first identifying a file key used to encrypt the
encrypted file. Since the encrypted file may pertain to the user
account, the file key may be encrypted with the encryption
key (i.e., the encryption key of the asymmetric key pair cor-
responding to the user account). Access module 116 may then
decrypt the file key with the decryption key and encrypt a
copy of the file key with the additional encryption key. In this
manner, the additional user account may have access to the
encrypted file (by, e.g., submitting the additional client-side
key to decrypt the file key, allowing for decryption of the
encrypted file by the file key).

In some examples, access module 116 may provide access
to the unencrypted version of the encrypted file to the addi-
tional user account by allowing an additional client-side key
corresponding to the additional user account to decrypt the
decryption key of the user account. For example, access mod-
ule 116 may identify an additional user account designated to
access the unencrypted version of the encrypted file. In this
example, an additional asymmetric key pair may be desig-
nated for the additional user account that includes both an
additional encryption key and an additional decryption key.
The additional decryption key may be encrypted with an
additional client-side key (pertaining, e.g., to an additional
client system corresponding to the additional user account).

In the above-described example, access module 116 may
provide access to the unencrypted version of the encrypted
file to the additional user account by encrypting the decryp-
tion key with the additional encryption key (and, e.g., storing
the encrypted decryption key for later use with the additional
user account). For example, one or more of the systems
described herein may later identify an additional request from
an additional client system to further access the encrypted file
via the additional user account. These systems may then
decrypt the decryption key with the additional decryption key
and use the decryption key to access the unencrypted version
of the encrypted file via the additional user account (by, e.g.,
using the decryption key to decrypt a file key with which the
encrypted file has been encrypted and then decrypting the
encrypted file with the file key). In some examples, the above-
described approach may be used to share multiple files
between the user account and the additional user account.
This approach may also eliminate some cryptographic pro-
cessing steps (by, e.g., not requiring the generation of a sepa-
rate encrypted file key for each file shared).

In some examples access module 116 may provide access
to the unencrypted version of the encrypted file based on a
membership to a group of user accounts. For example, access
module 116 may identify an additional asymmetric key pair
designated for a group of user accounts that include the user
account. The additional asymmetric key pair may include an
additional encryption key and an additional decryption key.
The additional decryption key may be encrypted with an
encryption key that corresponds to the asymmetric key pair of
the user account. Access module 116 may then decrypt the
additional decryption key with the decryption key. Access
module 116 may further identify a file key used to encrypt the
encrypted file. The file key may be encrypted with the addi-
tional encryption key. Accordingly, access module 116 may
decrypt the file key with the additional decryption key and

10

15

20

25

30

35

40

45

50

55

60

65

14

decrypt the encrypted file with the file key. In an additional
example, the encrypted file may be encrypted with the addi-
tional encryption key instead of a file key. In this example,
access module 116 may simply decrypt the encrypted file
with the additional decryption key.

For an example of multiple server-side tiers coordinating to
retrieve and use the client-side key, FIG. 5 is a block diagram
of an exemplary system 500 for secure third-party data stor-
age. As shown in FIG. 5, exemplary system 500 may include
client-side key stores 510 (including, e.g., a key store 512
with a client-side key 514 and a key store 516). Exemplary
system 500 may also include a connection tier 520 that
includes intermediate servers 522 and 524, a connection data-
base 526, a request queue 532, and a return queue 534. Exem-
plary system 500 may also include a data-access tier 540 that
includes data access servers 542 and 544.

In one example, at step 550, key store 512 may send a
long-poll request to intermediate server 522 to initiate a long-
poll connection. In some examples, connection module 106
may, as a part of intermediate server 522, may register this
connection in connection database 526. A user who has an
account with a third-party storage service and who controls
access to client-side key 514 may subsequently initiate a data
access request with the third-party storage service. Identifi-
cation module 104 may, as a part of data access server 542,
identify the data access request. At step 552, identification
module 104 and/or receiving module 112 may then attempt to
acquire client-side key 514 by issuing a call to a connection
tier 520 (received by an intermediate server 524). At step 554,
intermediate server 524 may place a request 536 for client-
side key 514 in a request queue 532. At step 556, intermediate
server 522 may retrieve request 536 from request queue 532
(e.g., because intermediate server 522 has a long poll connec-
tion established with key store 512 and request 536 is directed
to key store 512). In one example, intermediate server 524
and/or intermediate server 522 may consult connection data-
base 526 to determine that intermediate server 522 has a long
poll connection with key store 512 and that request 536 there-
fore corresponds to intermediate server 522. At step 558,
response module 110 may respond to the long poll request by
forwarding request 536 to key store 512. At step 560, key
store 512 may respond to request 536 by providing client-side
key 514 to intermediate server 522. At step 562, intermediate
server 522 may place client-side key 514 in a return queue
534. In some examples, intermediate server 522 may place
client-side key 514 in return queue 534 (e.g., as opposed to a
different return queue) based on request 536 having been
placed in request queue 532 by intermediate server 524. At
step 564, intermediate server 524 may retrieve client-side key
514. At step 566, intermediate server 524 may respond to the
earlier call made by data access server 542 to intermediate
server 524 with client-side key 514. Receiving module 112
may then, as a part of data access server 542, receive client-
side key 514 from intermediate server 524. Decryption mod-
ule 114 may then decrypt a decryption key using client-side
key 514. Access module 116 may then access an unencrypted
version of user-requested data by using the decrypted decryp-
tion key.

In some examples, intermediate server 522 and intermedi-
ate server 524 may operate in separate data centers. Addition-
ally or alternatively, data access server 542 and data access
server 544 may operate in separate data centers. In some
examples, by configuring intermediate servers to use request
queues and/or return queues instead of sending direct mes-
sages to each other, the systems described herein may

US 9,203,815 Bl

15

improve scalability (e.g., adding many intermediate servers
to the connection tier and/or adding many data access servers
to the data-access tier).

As explained above, by maintaining asymmetric key pairs
for encrypting and decrypting secured data (e.g., files and/or
encryption keys for files) on a third-party storage server and
encrypting the decryption keys of these asymmetric key pairs
with encryption keys maintained by clients, the systems and
methods described herein may securely store and encrypt
client data without storing the client-side decryption keys
required to access the secured data in an unencrypted state.
Furthermore, by using client-initiated long poll connections
to allow a third-party storage service to initiate requests for
the client-maintained encryption keys, these systems and
methods may improve client-side security (e.g., by enabling
the third-party storage service to initiate requests without
requiring that a client-side device maintain an open port that
could potentially weaken a firewall and increase client expo-
sure to outside threats). Additionally, in some examples these
systems and methods may authenticate requests to retrieve
client-side encryption keys to avoid unauthorized access to
client-side encryption keys.

In one example, to prevent opening a firewall at a customer
site, a customer key store may open an out-going long-poll
connection to a connection tier at a cloud storage provider.
The long-poll connection may time out, in which case the key
store may immediate reestablish the long-poll connection. A
connection server in the connection tier that receives the
long-poll connection may create and monitor a private queue.
Upon receiving a long-poll request from a key store, the
connection tier may create a queue for that key store if the
queue does not yet exist. The queue for the key store may be
dedicated to outgoing messages from the connection tier to
the key store. Such queues may support the scalability of the
connection tier.

When a user request from a client arrives to a client-facing
tier of the cloud storage provider, the client-serving tier may
make a blocking call to the connection tier for a user key from
the key store associated with the user. A connection server
may receive the request and check for an outstanding long
poll request from the matching key store. If an outstanding
long poll request is found, the connection server may reply to
the key store with a message that identifies the user (and that
identifies the private queue of the connection server). If no
outstanding long poll request from the matching key store is
found, the connection server may place the message into akey
store queue and the corresponding connection server may
retrieve the message and provide it in response to the out-
standing long poll request.

The key store may then retrieve the requested key and send
a POST request to the connection tier. The POST request may
include an identifier of the connection server and/or the pri-
vate queue of the connection server that received the earlier
blocking call. The connection server that receives the POST
request may then place the key in the queue of the connection
server that received the earlier blocking call. The connection
server that received the earlier blocking call may provide the
key in response to the earlier blocking call.

In one example, each request from the client (excepting the
first request from the client) may contain an old authentica-
tion token that is difficult to spoof because it contains an
encrypted part where the encryption was performed by a
provider key that is stored in a separate environment. The
authentication token may have been generated during a login
flow using the user’s credentials and never stored on the
backend, but only provided in client requests. The connection
server may validate the old authentication token to ensure that

10

15

20

25

30

35

40

45

55

60

65

16

it came from the client. For a new client login (including a
web-based login), a temporary token may be generated and
used to validate the request. In another example, a two-factor
authentication such as a SYMANTEC VIP token may be
leveraged by adding the token value (or a hash of the token
value) to a return redirect call to the provider. The provider
may then include the token in the key request to give the
corporate client infrastructure an opportunity to validate it.

FIG. 6 is a block diagram of an exemplary computing
system 610 capable of implementing one or more of the
embodiments described and/or illustrated herein. For
example, all or a portion of computing system 610 may per-
form and/or be a means for performing, either alone or in
combination with other elements, one or more of the steps
described herein (such as one or more of the steps illustrated
in FIG. 3). All or a portion of computing system 610 may also
perform and/or be a means for performing any other steps,
methods, or processes described and/or illustrated herein.

Computing system 610 broadly represents any single or
multi-processor computing device or system capable of
executing computer-readable instructions. Examples of com-
puting system 610 include, without limitation, workstations,
laptops, client-side terminals, servers, distributed computing
systems, handheld devices, or any other computing system or
device. In its most basic configuration, computing system 610
may include at least one processor 614 and a system memory
616.

Processor 614 generally represents any type or form of
processing unit capable of processing data or interpreting and
executing instructions. In certain embodiments, processor
614 may receive instructions from a software application or
module. These instructions may cause processor 614 to per-
form the functions of one or more of the exemplary embodi-
ments described and/or illustrated herein.

System memory 616 generally represents any type or form
of volatile or non-volatile storage device or medium capable
of storing data and/or other computer-readable instructions.
Examples of system memory 616 include, without limitation,
Random Access Memory (RAM), Read Only Memory
(ROM), flash memory, or any other suitable memory device.
Although not required, in certain embodiments computing
system 610 may include both a volatile memory unit (such as,
for example, system memory 616) and a non-volatile storage
device (such as, for example, primary storage device 632, as
described in detail below). In one example, one or more of
modules 102 from FIG. 1 may be loaded into system memory
616.

In certain embodiments, exemplary computing system 610
may also include one or more components or elements in
addition to processor 614 and system memory 616. For
example, as illustrated in FIG. 6, computing system 610 may
include a memory controller 618, an Input/Output (I/O) con-
troller 620, and a communication interface 622, each of which
may be interconnected via a communication infrastructure
612. Communication infrastructure 612 generally represents
any type or form of infrastructure capable of facilitating com-
munication between one or more components of a computing
device. Examples of communication infrastructure 612
include, without limitation, a communication bus (such as an
Industry Standard Architecture (ISA), Peripheral Component
Interconnect (PCI), PCI Express (PCle), or similar bus) and a
network.

Memory controller 618 generally represents any type or
form of device capable of handling memory or data or con-
trolling communication between one or more components of
computing system 610. For example, in certain embodiments
memory controller 618 may control communication between

US 9,203,815 Bl

17

processor 614, system memory 616, and 1/O controller 620
via communication infrastructure 612.

1/O controller 620 generally represents any type or form of
module capable of coordinating and/or controlling the input
and output functions of a computing device. For example, in
certain embodiments I/O controller 620 may control or facili-
tate transfer of data between one or more elements of com-
puting system 610, such as processor 614, system memory
616, communication interface 622, display adapter 626, input
interface 630, and storage interface 634.

Communication interface 622 broadly represents any type
or form of communication device or adapter capable of facili-
tating communication between exemplary computing system
610 and one or more additional devices. For example, in
certain embodiments communication interface 622 may
facilitate communication between computing system 610 and
a private or public network including additional computing
systems. Examples of communication interface 622 include,
without limitation, a wired network interface (such as a net-
work interface card), a wireless network interface (such as a
wireless network interface card), a modem, and any other
suitable interface. In at least one embodiment, communica-
tion interface 622 may provide a direct connection to aremote
server via a direct link to a network, such as the Internet.
Communication interface 622 may also indirectly provide
such a connection through, for example, a local area network
(such as an Ethernet network), a personal area network, a
telephone or cable network, a cellular telephone connection,
a satellite data connection, or any other suitable connection.

In certain embodiments, communication interface 622
may also represent a host adapter configured to facilitate
communication between computing system 610 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
face (SCSI) host adapters, Universal Serial Bus (USB) host
adapters, Institute of Electrical and Electronics Engineers
(IEEE) 1394 host adapters, Advanced Technology Attach-
ment (ATA), Parallel ATA (PATA), Serial ATA (SATA), and
External SATA (eSATA) host adapters, Fibre Channel inter-
face adapters, Ethernet adapters, or the like. Communication
interface 622 may also allow computing system 610 to
engage in distributed or remote computing. For example,
communication interface 622 may receive instructions from a
remote device or send instructions to a remote device for
execution.

As illustrated in FIG. 6, computing system 610 may also
include at least one display device 624 coupled to communi-
cation infrastructure 612 via a display adapter 626. Display
device 624 generally represents any type or form of device
capable of visually displaying information forwarded by dis-
play adapter 626. Similarly, display adapter 626 generally
represents any type or form of device configured to forward
graphics, text, and other data from communication infrastruc-
ture 612 (or from a frame buffer, as known in the art) for
display on display device 624.

As illustrated in FIG. 6, exemplary computing system 610
may also include at least one input device 628 coupled to
communication infrastructure 612 via an input interface 630.
Input device 628 generally represents any type or form of
input device capable of providing input, either computer or
human generated, to exemplary computing system 610.
Examples of input device 628 include, without limitation, a
keyboard, a pointing device, a speech recognition device, or
any other input device.

As illustrated in FIG. 6, exemplary computing system 610
may also include a primary storage device 632 and a backup

10

20

30

40

45

55

65

18

storage device 633 coupled to communication infrastructure
612 via a storage interface 634. Storage devices 632 and 633
generally represent any type or form of storage device or
medium capable of storing data and/or other computer-read-
able instructions. For example, storage devices 632 and 633
may be a magnetic disk drive (e.g., a so-called hard drive), a
solid state drive, a floppy disk drive, a magnetic tape drive, an
optical disk drive, a flash drive, or the like. Storage interface
634 generally represents any type or form of interface or
device for transferring data between storage devices 632 and
633 and other components of computing system 610.

In certain embodiments, storage devices 632 and 633 may
be configured to read from and/or write to a removable stor-
age unit configured to store computer software, data, or other
computer-readable information. Examples of suitable remov-
able storage units include, without limitation, a floppy disk, a
magnetic tape, an optical disk, a flash memory device, or the
like. Storage devices 632 and 633 may also include other
similar structures or devices for allowing computer software,
data, or other computer-readable instructions to be loaded
into computing system 610. For example, storage devices 632
and 633 may be configured to read and write software, data, or
other computer-readable information. Storage devices 632
and 633 may also be a part of computing system 610 or may
be a separate device accessed through other interface sys-
tems.

Many other devices or subsystems may be connected to
computing system 610. Conversely, all of the components
and devices illustrated in FIG. 6 need not be present to prac-
tice the embodiments described and/or illustrated herein. The
devices and subsystems referenced above may also be inter-
connected in different ways from that shown in FIG. 6. Com-
puting system 610 may also employ any number of software,
firmware, and/or hardware configurations. For example, one
or more of the exemplary embodiments disclosed herein may
be encoded as a computer program (also referred to as com-
puter software, software applications, computer-readable
instructions, or computer control logic) on a computer-read-
able-storage medium. The phrase “computer-readable-stor-
age medium” generally refers to any form of device, carrier,
or medium capable of storing or carrying computer-readable
instructions. Examples of computer-readable-storage media
include, without limitation, transmission-type media, such as
carrier waves, and non-transitory-type media, such as mag-
netic-storage media (e.g., hard disk drives and floppy disks),
optical-storage media (e.g., Compact Disks (CDs) or Digital
Video Disks (DVDs)), electronic-storage media (e.g., solid-
state drives and flash media), and other distribution systems.

The computer-readable-storage medium containing the
computer program may be loaded into computing system
610. All or a portion of the computer program stored on the
computer-readable-storage medium may then be stored in
system memory 616 and/or various portions of storage
devices 632 and 633. When executed by processor 614, a
computer program loaded into computing system 610 may
cause processor 614 to perform and/or be a means for per-
forming the functions of one or more of the exemplary
embodiments described and/or illustrated herein. Addition-
ally or alternatively, one or more of the exemplary embodi-
ments described and/or illustrated herein may be imple-
mented in firmware and/or hardware. For example,
computing system 610 may be configured as an Application
Specific Integrated Circuit (ASIC) adapted to implement one
or more of the exemplary embodiments disclosed herein.

FIG. 7 is a block diagram of an exemplary network archi-
tecture 700 in which client systems 710, 720, and 730 and
servers 740 and 745 may be coupled to a network 750. As

US 9,203,815 Bl

19

detailed above, all or a portion of network architecture 700
may perform and/or be a means for performing, either alone
or in combination with other elements, one or more of the
steps disclosed herein (such as one or more of the steps
illustrated in FIG. 3). All or a portion of network architecture
700 may also be used to perform and/or be a means for
performing other steps and features set forth in the instant
disclosure.

Client systems 710, 720, and 730 generally represent any
type or form of computing device or system, such as exem-
plary computing system 610 in FIG. 6. Similarly, servers 740
and 745 generally represent computing devices or systems,
such as application servers or database servers, configured to
provide various database services and/or run certain software
applications. Network 750 generally represents any telecom-
munication or computer network including, for example, an
intranet, a WAN, a LAN, a PAN, or the Internet. In one
example, client systems 710, 720, and/or 730 and/or servers
740 and/or 745 may include all or a portion of system 100
from FIG. 1.

As illustrated in FIG. 7, one or more storage devices 760
(1)-(N) may be directly attached to server 740. Similarly, one
or more storage devices 770(1)-(N) may be directly attached
to server 745. Storage devices 760(1)-(N) and storage devices
770(1)-(N) generally represent any type or form of storage
device or medium capable of storing data and/or other com-
puter-readable instructions. In certain embodiments, storage
devices 760(1)-(N) and storage devices 770(1)-(N) may rep-
resent Network-Attached Storage (NAS) devices configured
to communicate with servers 740 and 745 using various pro-
tocols, such as Network File System (NFS), Server Message
Block (SMB), or Common Internet File System (CIFS).

Servers 740 and 745 may also be connected to a Storage
Area Network (SAN) fabric 780. SAN fabric 780 generally
represents any type or form of computer network or architec-
ture capable of facilitating communication between a plural-
ity of storage devices. SAN fabric 780 may facilitate commu-
nication between servers 740 and 745 and a plurality of
storage devices 790(1)-(N) and/or an intelligent storage array
795. SAN fabric 780 may also facilitate, via network 750 and
servers 740 and 745, communication between client systems
710, 720, and 730 and storage devices 790(1)-(N) and/or
intelligent storage array 795 in such a manner that devices
790(1)-(N) and array 795 appear as locally attached devices
to client systems 710, 720, and 730. As with storage devices
760(1)-(N) and storage devices 770(1)-(N), storage devices
790(1)-(N) and intelligent storage array 795 generally repre-
sent any type or form of storage device or medium capable of
storing data and/or other computer-readable instructions.

In certain embodiments, and with reference to exemplary
computing system 610 of FIG. 6, a communication interface,
such as communication interface 622 in FIG. 6, may be used
to provide connectivity between each client system 710, 720,
and 730 and network 750. Client systems 710, 720, and 730
may be able to access information on server 740 or 745 using,
for example, a web browser or other client software. Such
software may allow client systems 710, 720, and 730 to
access data hosted by server 740, server 745, storage devices
760(1)-(N), storage devices 770(1)-(N), storage devices 790
(1)-(N), or intelligent storage array 795. Although FIG. 7
depicts the use of a network (such as the Internet) for
exchanging data, the embodiments described and/or illus-
trated herein are not limited to the Internet or any particular
network-based environment.

In at least one embodiment, all or a portion of one or more
of the exemplary embodiments disclosed herein may be
encoded as a computer program and loaded onto and executed

10

15

20

25

30

35

40

45

50

55

60

65

20

by server 740, server 745, storage devices 760(1)-(N), storage
devices 770(1)-(N), storage devices 790(1)-(N), intelligent
storage array 795, or any combination thereof. All or a portion
of one or more of the exemplary embodiments disclosed
herein may also be encoded as a computer program, stored in
server 740, run by server 745, and distributed to client sys-
tems 710, 720, and 730 over network 750.

As detailed above, computing system 610 and/or one or
more components of network architecture 700 may perform
and/or be a means for performing, either alone or in combi-
nation with other elements, one or more steps of an exemplary
method for secure third-party data storage.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collectively,
using a wide range of hardware, software, or firmware (or any
combination thereof) configurations. In addition, any disclo-
sure of components contained within other components
should be considered exemplary in nature since many other
architectures can be implemented to achieve the same func-
tionality.

Insome examples, all or a portion of exemplary system 100
in FIG. 1 may represent portions of a cloud-computing or
network-based environment. Cloud-computing environ-
ments may provide various services and applications via the
Internet. These cloud-based services (e.g., software as a ser-
vice, platform as a service, infrastructure as a service, etc.)
may be accessible through a web browser or other remote
interface. Various functions described herein may be pro-
vided through a remote desktop environment or any other
cloud-based computing environment.

In various embodiments, all or a portion of exemplary
system 100 in FIG. 1 may facilitate multi-tenancy within a
cloud-based computing environment. In other words, the
software modules described herein may configure a comput-
ing system (e.g., a server) to facilitate multi-tenancy for one
or more of the functions described herein. For example, one
or more of the software modules described herein may pro-
gram a server to enable two or more clients (e.g., customers)
to share an application that is running on the server. A server
programmed in this manner may share an application, oper-
ating system, processing system, and/or storage system
among multiple customers (i.e., tenants). One or more of the
modules described herein may also partition data and/or con-
figuration information of a multi-tenant application for each
customer such that one customer cannot access data and/or
configuration information of another customer.

According to various embodiments, all or a portion of
exemplary system 100 in FIG. 1 may be implemented within
a virtual environment. For example, modules and/or data
described herein may reside and/or execute within a virtual
machine. As used herein, the phrase “virtual machine” gen-
erally refers to any operating system environment that is
abstracted from computing hardware by a virtual machine
manager (e.g., a hypervisor). Additionally or alternatively,
the modules and/or data described herein may reside and/or
execute within a virtualization layer. As used herein, the
phrase “virtualization layer” generally refers to any data layer
and/or application layer that overlays and/or is abstracted
from an operating system environment. A virtualization layer
may be managed by a software virtualization solution (e.g., a
file system filter) that presents the virtualization layer as
though it were part of an underlying base operating system.
For example, a software virtualization solution may redirect

US 9,203,815 Bl

21

calls that are initially directed to locations within a base file
system and/or registry to locations within a virtualization
layer.

In some examples, all or a portion of exemplary system 100
in FIG. 1 may represent portions of a mobile computing
environment. Mobile computing environments may be
implemented by a wide range of mobile computing devices,
including mobile phones, tablet computers, e-book readers,
personal digital assistants, wearable computing devices (e.g.,
computing devices with a head-mounted display, smart-
watches, etc.), and the like. In some examples, mobile com-
puting environments may have one or more distinct features,
including, for example, reliance on battery power, presenting
only one foreground application at any given time, remote
management features, touchscreen features, location and
movement data (e.g., provided by Global Positioning Sys-
tems, gyroscopes, accelerometers, etc.), restricted platforms
that restrict modifications to system-level configurations and/
or that limit the ability of third-party software to inspect the
behavior of other applications, controls to restrict the instal-
lation of applications (e.g., to only originate from approved
application stores), etc. Various functions described herein
may be provided for a mobile computing environment and/or
may interact with a mobile computing environment.

In addition, all or a portion of exemplary system 100 in
FIG. 1 may represent portions of, interact with, consume data
produced by, and/or produce data consumed by one or more
systems for information management. As used herein, the
phrase “information management” may refer to the protec-
tion, organization, and/or storage of data. Examples of sys-
tems for information management may include, without limi-
tation, storage systems, backup systems, archival systems,
replication systems, high availability systems, data search
systems, virtualization systems, and the like.

In some embodiments, all or a portion of exemplary system
100 in FIG. 1 may represent portions of, produce data pro-
tected by, and/or communicate with one or more systems for
information security. As used herein, the phrase “information
security” may refer to the control of access to protected data.
Examples of systems for information security may include,
without limitation, systems providing managed security ser-
vices, data loss prevention systems, identity authentication
systems, access control systems, encryption systems, policy
compliance systems, intrusion detection and prevention sys-
tems, electronic discovery systems, and the like.

According to some examples, all or a portion of exemplary
system 100 in FIG. 1 may represent portions of, communicate
with, and/or receive protection from one or more systems for
endpoint security. As used herein, the phrase “endpoint secu-
rity” may refer to the protection of endpoint systems from
unauthorized and/or illegitimate use, access, and/or control.
Examples of systems for endpoint protection may include,
without limitation, anti-malware systems, user authentication
systems, encryption systems, privacy systems, spam-filtering
services, and the like.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only
and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or discussed
in a particular order, these steps do not necessarily need to be
performed in the order illustrated or discussed. The various
exemplary methods described and/or illustrated herein may
also omit one or more of the steps described or illustrated
herein or include additional steps in addition to those dis-
closed.

While various embodiments have been described and/or
illustrated herein in the context of fully functional computing

10

15

20

25

30

35

40

45

50

55

60

65

22

systems, one or more of these exemplary embodiments may
be distributed as a program product in a variety of forms,
regardless of the particular type of computer-readable-stor-
age media used to actually carry out the distribution. The
embodiments disclosed herein may also be implemented
using software modules that perform certain tasks. These
software modules may include script, batch, or other execut-
able files that may be stored on a computer-readable storage
medium or in a computing system. In some embodiments,
these software modules may configure a computing system to
perform one or more of the exemplary embodiments dis-
closed herein.

In addition, one or more of the modules described herein
may transform data, physical devices, and/or representations
of physical devices from one form to another. For example,
one or more of the modules recited herein may receive a long
poll request, transform the request into a decryption key,
output the decryption key to a cloud storage service, use the
decryption key to access cloud-stored data for the owner of
the decryption key, and store the cloud-stored data on a com-
puting device controlled by the owner of the decryption key.
Additionally or alternatively, one or more of the modules
recited herein may transform a processor, volatile memory,
non-volatile memory, and/or any other portion of a physical
computing device from one form to another by executing on
the computing device, storing data on the computing device,
and/or otherwise interacting with the computing device.

The preceding description has been provided to enable
others skilled in the art to best utilize various aspects of the
exemplary embodiments disclosed herein. This exemplary
description is not intended to be exhaustive or to be limited to
any precise form disclosed. Many modifications and varia-
tions are possible without departing from the spirit and scope
of the instant disclosure. The embodiments disclosed herein
should be considered in all respects illustrative and not
restrictive. Reference should be made to the appended claims
and their equivalents in determining the scope of the instant
disclosure.

Unless otherwise noted, the terms “a” or “an,” as used in
the specification and claims, are to be construed as meaning
“at least one of” In addition, for ease of use, the words
“including” and “having,” as used in the specification and
claims, are interchangeable with and have the same meaning
as the word “comprising.”

What is claimed is:

1. A computer-implemented method for secure third-party
data storage,

at least a portion of the method being performed by a

computing device comprising at least one processor, the
method comprising:

receiving, at a server-side computing system, a long poll

request from a client system;

identifying, at the server-side computing system, a data

access request from the client system to access an
encrypted file stored under a user account, wherein the
requested access requires decryption of the encrypted
file, wherein the data access request is subsequent to the
long poll request;

identifying, in reaction to the data access request, an asym-

metric key pair designated for the user account, the
asymmetric key pair comprising an encryption key and a
decryption key that has been encrypted with a client-side
key;

responding to the long poll request, in reaction to the data

access request, with a message notifying the client sys-
tem to transmit the client-side key;

receiving, from the client system, the client-side key;

US 9,203,815 Bl

23

decrypting the decryption key with the client-side key; and

using the decryption key to access an unencrypted version

of'the encrypted file.
2. The computer-implemented method of claim 1, further
comprising receiving a prior long poll request from the client
system that times out before receiving the long poll request
from the client system, wherein the client system sends the
long poll request in response to determining that the prior
long poll request has timed out.
3. The computer-implemented method of claim 1, wherein:
receiving the long poll request from the client system com-
prises receiving the long poll request at an intermediate
application tier that is configured to receive the client-
side key from the client system and to provide the client-
side key to a data-serving application tier that accesses
the unencrypted version of the encrypted file;

decrypting the decryption key with the client-side key
comprises decrypting the decryption key at the data-
serving application tier.

4. The computer-implemented method of claim 3, wherein
identifying the data access request comprises receiving the
data access request at the data-serving application tier.

5. The computer-implemented method of claim 4, wherein
the data-serving application tier, in response to receiving the
data access request, performs a synchronous call to the inter-
mediate application tier that requests the client-side key.

6. The computer-implemented method of claim 3, wherein
the intermediate application tier, upon receiving a synchro-
nous call from the data-serving application tier that requests
the client-side key, checks for an active long poll connection
established by the long poll request.

7. The computer-implemented method of claim 3, wherein:

the intermediate application tier, upon receiving a synchro-

nous call from the data-serving application tier that
requests the client-side key, determines that no active
long poll connection for requesting the client-side key is
available;

in response to determining that no active long poll connec-

tion for requesting the client-side key is available, the
intermediate application tier places the synchronous call
in a request queue until an active long poll connection is
established via the long poll request.

8. The computer-implemented method of claim 3, wherein:

a first server within the intermediate application tier

receives a synchronous call from the data-serving appli-
cation tier requesting the client-side key;

a second server within the intermediate application tier

receives the client-side key from the client system;

the second server places the client-side key in a return

queue;

the first server retrieves the client-side key from the return

queue.

9. The computer-implemented method of claim 3, wherein:

the intermediate application tier receives an authentication

token derived at least in part from user credential infor-
mation used for access to the data-serving application
tier;

the intermediate application tier responds with the message

notifying the client system to transmit the client-side key
in response to determining that the authentication token
is valid.

10. A system for secure third-party data storage, the system
comprising:

a connection module that receives, at a server-side com-

puting system, a long poll request from a client system;
an identification module that identifies, at the server-side
computing system, a data access request from the client

10

15

20

25

30

35

40

45

50

55

60

65

24

system to access an encrypted file stored under a user
account, wherein the requested access requires decryp-
tion of the encrypted file, wherein the data access request
is subsequent to the long poll request;

a key module that identifies, in reaction to the data access
request, an asymmetric key pair designated for the user
account, the asymmetric key pair comprising an encryp-
tion key and a decryption key that has been encrypted
with a client-side key;

a response module that responds to the long poll request, in
reaction to the data access request, with a message noti-
fying the client system to transmit the client-side key;

a receiving module that receives, from the client system,
the client-side key;

a decryption module that decrypts the decryption key with
the client-side key;

an access module that uses the decryption key to access an
unencrypted version of the encrypted file;

at least one hardware processor configured to execute the
identification module, the connection module, the key
module, the response module, the receiving module, the
decryption module, and the access module.

11. The system of claim 10, wherein:

the receiving module further receives a prior long poll
request from the client system that times out before
receiving the long poll request from the client system;

the client system sends the long poll request in response to
determining that the prior long poll request has timed
out.

12. The system of claim 10, wherein:

the receiving module receives the long poll request from
the client system by receiving the long poll request at an
intermediate application tier that is configured to receive
the client-side key from the client system and to provide
the client-side key to a data-serving application tier that
accesses the unencrypted version of the encrypted file;

the decryption module decrypts the decryption key with the
client-side key by decrypting the decryption key at the
data-serving application tier.

13. The system of claim 12, wherein the identification
module identifies the data access request by receiving the data
access request at the data-serving application tier.

14. The system of claim 13, wherein the data-serving appli-
cation tier, in response to receiving the data access request,
performs a synchronous call to the intermediate application
tier that requests the client-side key.

15. The system of claim 12, wherein the intermediate appli-
cation tier, upon receiving a synchronous call from the data-
serving application tier that requests the client-side key,
checks for an active long poll connection established by the
long poll request.

16. The system of claim 12, wherein:

the intermediate application tier, upon receiving a synchro-
nous call from the data-serving application tier that
requests the client-side key, determines that no active
long poll connection for requesting the client-side key is
available;

in response to determining that no active long poll connec-
tion for requesting the client-side key is available, the
intermediate application tier places the synchronous call
in a request queue until an active long poll connection is
established via the long poll request.

17. The system of claim 12, wherein:

a first server within the intermediate application tier
receives a synchronous call from the data-serving appli-
cation tier requesting the client-side key;

US 9,203,815 Bl

25

a second server within the intermediate application tier

receives the client-side key from the client system;

the second server places the client-side key in a return

queue;

the first server retrieves the client-side key from the return

queue.

18. The system of claim 12, wherein:

the intermediate application tier receives an authentication

token derived at least in part from user credential infor-
mation used for access to the data-serving application
tier;

the intermediate application tier responds with the message

notifying the client system to transmit the client-side key
in response to determining that the authentication token
is valid.

19. A non-transitory computer-readable-storage medium
comprising one or more computer-readable instructions that,
when executed by at least one processor of a computing
device, cause the computing device to:

receive, at a server-side computing system, a long poll

request from a client system;

identify, at the server-side computing system, a data access

request from the client system to access an encrypted file
stored under a user account, wherein the requested

10

15

26

access requires decryption of the encrypted file, wherein
the data access request is subsequent to the long poll
request;

identify, in reaction to the data access request, an asym-
metric key pair designated for the user account, the
asymmetric key pair comprising an encryption key and a
decryption key that has been encrypted with a client-side
key;

respond to the long poll request, in reaction to the data
access request, with a message notifying the client sys-
tem to transmit the client-side key;

receive, from the client system, the client-side key;

decrypt the decryption key with the client-side key;

use the decryption key to access an unencrypted version of
the encrypted file.

20. The non-transitory computer-readable-storage

medium of claim 19, wherein:

the one or more computer-readable instructions cause the
computing device to receive a prior long poll request
from the client system that times out before receiving the
long poll request from the client system;

the client system sends the long poll request in response to
determining that the prior long poll request has timed
out.

